Energiatehokas pientalo on askel kohti ympäristöystävällistä asumista

Suunnitteluvaiheen ratkaisuilla vaikutetaan rakentamisen kokonaiskustannuksiin, käyttökustannuksiin ja hiilijalanjälkeen. Energia- ja käyttökustannukset määräytyvä 80-90 prosenttisesti suunnittelun aikana tehtyjen valintojen perusteella.  Lämmöntuottotavalla on suuri merkitys ostoenergian tarpeeseen. Erilaiset lämpöpumppuratkaisut ovat nykyaikaisissa pientaloissa tavallisia ja niillä pystytään leikkaamaan kokonaisenergiankulutusta huomattavasti. Tekniset ratkaisut ovat vuorovaikutuksessa ja samanlaisilla yksittäisillä ratkaisuilla saattaa olla toisistaan poikkeavia vaikutuksia eri kohteissa. Esimerkiksi maalämmön hyödyntäminen voi olla varsin vaatimatonta pienen passiivitalon lämmittämisessä. Toisaalta kaikki energiasäästö vähentää myös rakennuksen hiilidioksidipäästöjä, vaikka kustannustehokkuuden näkökulmasta hyöty on vähäinen tai olematon.

Energiatehokkuuden saavuttaminen ei vaadi tavallisesti mitään erikoisratkaisuja rakentamisessa. Keskeiset tekijät ovat ilmanpitävät rakenteet, hyvä ilmanvaihdon lämmön talteenotto, riittävä talon vaipan eristys sekä energiatehokkaat ikkunat ja ovet.

Teoreettista tarkastelua simulointien avulla

Eri osatekijöiden vaikutusta voidaan tarkastella rakennuksesta luotujen mallien avulla. Vaihtamalla mallissa asetusarvoja saadaan käsitys teknisten ratkaisujen vaikutuksesta esimerkiksi energiankulutukseen. Kun tiedetään energiankulutus, saadaan myös arvio hiilidioksidipäästöistä.

Yksittäisten tekijöiden merkitystä selvitettiin simuloimalla kolmea pientaloa.  Kohteiksi valitut rakennukset olivat varsin eri tyyppisiä, joskin suhteellisen saman kokoisia yksikerroksisia rakennuksia. Rakennusten mallien lähtötiedot olivat taulukon 1 mukaisia.

Taulukko 1. Simulointimallien lähtötietoja

Kohteiden simuloinneissa ei tarkasteltu muita lämmitysmuotoja kuin päälämmitystapaa. Kaikissa rakennuksissa oli tulisija, mutta sen vaikutusta ei arvioitu. Ilmalämpöpumpun käyttöä ei myöskään huomioitu lämmityksessä tai jäähdytyksessä. Tuloksissa korostuu suoran sähkölämmitystalon korkeammat arvot, koska lämpöenergian tuottamiseen tarvitaan enemmän sähköenergiaa kuin lämpöpumppuja hyväksikäyttävissä rakennuksissa.

Lisäksi on huomioitava, että vertailu perustuu yksittäisen tekijän vaikutuksesta lähtötasoon. Energiakulutukseen vaikuttavat tekijät vaikuttavat toisiinsa, eikä osatekijöiden yhteenlaskeminen vastaa todellista nousua tai laskua kulutuksessa.

Hiilidioksidin kuormituksen arviointi perustuu Suomen keskimääräiseen sähköntuotannon CO2-päästökertoimeen 164 kg CO2/MWh

Ilmanpitävät rakenteet

Mitä tiiviimpi talo sitä vähemmän kuluu energiaa. Ilmatiiviyden saavuttaminen edellyttää erityisesti hyvää liitosdetaljien suunnittelua ja huolellista rakentamista. Tiivistämisen materiaalimenekki on minimaalinen.

Rakennuksen tiiviyden määrittely perustuu siihen, minkä verran vaipparakenne päästää ilmaa lävitseen aikayksikössä. Käytössä on ilmanvuotolukuluku (q50), joka ilmaisee, kuinka monta kuutiometriä ilmaa läpäisee rakenteen neliömetriä kohden tunnissa 50 Pascalin paine-erolla.

Ilmatiiviyden vaikutusta ostoenergian kulutukseen arvioitiin simuloimalla kohteita eri ilmanvuotoluvuilla Porin vuoden 2013 säätiedoilla rakennetussa kaupunkiympäristössä. Vertailuarvona käytettiin ilmanvuotolukua q50=1 m3/(h*m2), joka edustaa verraten normaalia tasoa uusien rakennusten mittaustilastoista. Parannettaessa tiiviyttä erinomaiseksi säästetään vuositasolla energiaa tarkastelluissa rakennuksissa 110 – 150 kWh. Alimmalla hyväksyttävällä tiiviystasolla (q50=4) energiankulutus kasvaisi kohteissa 560 – 1250 kWh vuodessa. Tämä merkitsee viidenkymmenen vuoden aikana 4600 – 10 250 kg hiilidioksidin lisäkuormaa.

Taulukko 2. Vuotoilman muutoksen vaikutus energiakulutukseen vertailutasosta q50=1,0 m3/(hm2)

Ilmanvaihtokoneen hyötysuhde

Ilmanvaihto on oleellinen tekijä terveellisessä ja viihtyisässä asumisessa. Yleisin tapa toteuttaa riittävä ilmanvaihto on lämmöntalteenotolla varustettu tulo-poistoilmakone. Lämmöntalteenotto on huomioitu myös rakentamismääräyksissä ja asennettaville koneille on määritelty vähimmäishyötysuhde. Käytännössä tämä tarkoittaa, sitä kuinka paljon tuloilmaa pystytään lämmittämään poistoilmasta talteen otetulla lämpöenergialla.

Kohteita simuloitiin vaihtamalla ilmanvaihtokoneen lämpötilasuhdetta ja vertaamalla vuoden energiakulutusta lähtötasoon, joka edusti varsin tyypillistä pientalon energiatehokasta konetta. Vertailukoneen tuloilman lämpötilasuhde oli 0,75. Todellinen keskimääräinen vuosihyötysuhde oli tällöin 65-75 % riippuen käytettävistä ilmamääristä.

Lämpötilasuhteella 0,60 ostoenergian kulutus kasvoi 430 – 930 kWh vuodessa. Tämä merkitsee 3550 – 7630 kg lisäystä hiilidioksidimäärässä 50 vuoden aikana. Lämpötilasuhteella 0,80 vastaava kulutus väheni 100 – 220 kWh vuodessa.

Taulukko 3. Ilmanvaihtokoneen lämpötilasuhteen muutoksen vaikutus energiakulutukseen vuodessa verrattuna 0,75 lämpötilasuhteella toimivaan IV-koneeseen

Ilmanvaihdon ilmamäärillä on vaikutusta energiakulutukseen. Tehokkaamman ilmanvaihdon energiakulutuksen lisääntyminen johtuu pääasiassa tuloilman lämmityksestä ja poistoilman mukana karkaavasta lämmöstä. Simuloimalla tehtiin arvio tehostetun ilmanvaihdon energiakulutuksesta suhteessa rakentamismääräysten minimitasoon. Minimitaso saatetaan kokea syystä tai toisesta riittämättömäksi.

Ilmavaihdon tehostaminen

Ilmamääriä kasvattamalla 20% ostoenergian kulutus kasvoi 307 – 759 kWh vuodessa ja 30 % korotus lisäsi kulutusta 460 – 1142 kWh vuodessa. Tässä yhteydessä on hyvä huomioida, että tehostettua tai normaalitasoa tarvitaan silloin kun tiloissa oleskellaan ja ilmanvaihdon pienentäminen vähentää energian kulutusta huomattavasti. Tilojen ollessa poissa käytöstä ilmanvaihdon tasoa voidaan pudottaa minimissään 0,15 litraan sekunnissa asuinneliötä kohden, joka vastaan 60 – 70 % pienempää ilman vaihtuvuutta normaalitasoon verrattuna. Käytön mukaisella ilmanvaihdon ohjauksella voidaan siis saavuttaa huomattavia vähennyksiä energiakulutuksessa riippuen asunnon käyttöasteesta.

Taulukko 4. Ilmanvaihdon tehostamisen vaikutus vuodessa verrattuna normi ilmanvaihtoon

Seinien lämmöneristävyys

Lämmöneristävyyden arvioinnissa keskityttiin seinärakenteisiin. Simuloinneissa tehtiin tarkasteluja muuttamalla seinien eristevahvuuksia ja vertaamalla vaikutuksia energiankulutuksen ja hiilijalanjäljen osalta lähtötilanteeseen, joka oli toteutettu rakennus.  Toimenpiteet ja saadut tulokset ovat esitetty taulukoissa 5 – 7.

Tuloksissa korostuu seinien eristämisen vaikutus hirsitalossa, jonka seinien lämmönvastus oli lähtötilanteessa heikoin. Lisäeristämisellä saadaan merkittävä säästö energiankulutuksessa. Kun sama määrä eristettä lisätiin jo hyvin eristettyyn seinään rakennuksessa B jäi vaikutus puolta pienemmäksi energiankulutuksessa, vaikka lämmöntuotto vaati kaksinkertaisen määrän ostoenergiaa.

Kohteessa A seinärakennetta muutettiin simuloinneissa huonommaksi kuin vertailutilanne, jotta voitiin verrata ns. passiivitalon seinärakenteen vaikutusta energiakulutukseen suhteessa heikommin lämpöeristettyihin seiniin. Vaikutus oli yllättävän pieni johtuen suhteellisen pienestä ulkoseinien pinta-alasta ja lämmitysjärjestelmän korkeasta hyötysuhteesta. Verrattaessa A ja B kohteiden muutosten vaikutuksia havaitaan edelleen, että samansuuruisella seinärakenteen u-arvon muutoksella energiankulutuksen muutos poikkeaa kuitenkin merkittävästi. Tämä johtuu pääasiassa rakennuksen vähemmän ostoenergiaa käyttävästä, maalämpöä hyödyntävästä, lämmityksestä.

Taulukko 5. Ulkoseinien lämmöneristyksen muutoksen vaikutus energiakulutukseen ja hiilijalanjälkeen kohteessa A
Taulukko 6. Ulkoseinien lämmöneristyksen muutoksen vaikutus energiakulutukseen ja hiilijalanjälkeen kohteessa B
Taulukko 7. Ulkoseinien lämmöneristyksen muutoksen vaikutus energiakulutukseen ja hiilijalanjälkeen kohteessa C

Ikkunoiden lämmöneristävyys

Simuloimalla kahta erilaista ikkunatyyppiä kohteessa B saatiin arvio paremmin lämpöä eristävien ikkunoiden vaikutuksesta energiakulutukseen. Kohteessa verrattiin lämmönläpäisyarvoiltaan 0,8 W/(m2K) ja 0,6 W/(m2K) ikkunoita. Ostoenergian kulutus pieneni 871 kWh vuodessa yhteispinta-alaltaan 24,3 m2 ikkunoilla. Tämä merkitsee 7140 kg CO2-ekv päästössä 50 vuoden aikana. Arvioidun kaltainen ikkunan U-arvon muutos ei materiaalina kasvata hiilijalanjälkeä. Kohdetta lämmitettiin suoralla sähkölämmityksellä.

Ikkunoilla ja niiden sijoittelulla on vaikutusta kiinteistön lämpötaseeseen. Niiden muut ominaisuudet esimerkiksi auringonsäteilyn suhteen lisäävät vaihtoehtoja eri vuodenaikoina tapahtuvassa lämmönsiirtymisessä. Valinnoilla on merkitystä myös tilojen ylilämpenemisen suhteen.

Huomioita simulointien tuloksista

Vuotoilman aiheuttama energiankulutus on lähes suoraan verrannollinen suhteessa vuodon määrään. Rakennuksen vaipan kautta tapahtuvassa ilmanvaihdossa poistoilma ohittaa lämmön talteenoton ja sisään tuleva ilma on ulkoilman lämpöistä. Sisään tuleva ilma joudutaan lämmittämään lämmitysjärjestelmällä tavoitelämpötilaan, josta johtuva energiakulutus on suoraan sidoksissa rakennuksen lämmitysjärjestelmän hyötysuhteeseen. Simuloiduista tapauksista ostoenergiaa kuluu tästä syystä eniten suoran sähkölämmityksen kohteessa.

Tulokset ilmanvaihtokoneen hyötysuhteen vaikutusten arvioinnista olivat saman suuntaiset. Suurin hyöty paremmasta laitteesta saadaan eniten ostoenergiaa lämmitykseen kuluttavasta kohteessa. Kohteessa A suurempi ilmamäärän vaikutus kokonaisenergiankulutukseen kompensoituu hyötysuhteeltaan hyvällä maalämpöjärjestelmällä.

Edelleen, suurin ilmamäärien kasvattamisesta aiheutuva vaikutus energiankulutukseen havaitaan suoran sähkölämmityksen rakennuksessa.

Seinien lämmöneristävyyden parantamisella saadaan paras vaikutus kohteessa, jossa alkuperäinen seinien lämmönjohtavuus on suurin. Eristeen hiilijalanjälki on pieni ja mahdollisesti tarvittava lautavuoraus sitoo hiiltä materiaalina. Esimerkiksi 25 mm tuulensuojalevyn ja lautavuorauksen lisääminen hirsitaloon vähentää hiilidioksidipäästöjä 50 vuodessa 6500 kg. Samaa luokkaa on vaikutus, kun valitaan U-arvoltaan 0,2 W/(m2K) paremmat ikkunat.

Edellä mainittuja ratkaisuja on hyvä miettiä jo siinä vaiheessa, kun rakennusta suunnitellaan. Niiden materiaalinen vaikutus hiilijalanjälkeen on häviävän pieni ja kustannukset vähäiset. Pienten tekijöiden yhteisvaikutuksella voidaan saavuttaa suuret säästöt energiankulutuksessa, kun tarkastellaan rakennuksen koko elinkaarta.

Mallien taustana olevissa kohteissa on huomioitu energiasäästö. Suoran sähkölämmityksen talossa ilmalämpöpumppu huolehtii suuren osan rakennuksen lämmityksestä. Hirsirakennuksessa on panostettu säätöautomaatioon ja lämmitysjärjestelmän optimointiin. Kolmas rakennus oli passiivitalo, jossa energiasäästö oli huomioitu kaikissa ratkaisuissa.

 

Teksti ja Kuvat: Jaakko Aaltonen

Rakennusten simuloinnista tukea suunnitteluratkaisuille

Simulointi on todellisuuden jäljittelyä. Rakennusten suunnitteluvaiheessa voidaan käyttää tietokoneohjelmaa, jossa luotua rakennusmallia tarkastellaan tulevassa ympäristössään. Malliin voidaan tuoda muuttuvat sää-, valaistus-, kuormitus- ja ääniolosuhteet sekä muut halutut tekijät ja tarkastella suunniteltujen teknisten ratkaisujen vaikutuksia. Erityisen arvokasta tällä tavalla saatu tieto on tilanteissa, joista ei ole aikaisempaa käytännön kokemusta. Rakentaja voi esimerkiksi vertailla erilaisten rakenne- ja laitevalintojen vaikutuksia rakennuksen pitkäaikaisiin käyttökustannuksiin.

Rakennus on jatkuvassa vuorovaikutuksessa ympäristön kanssa. Tässä vuorovaikutuksessa tapahtuu lukuisia muuttuvia ja samanaikaisia fysikaalisia ilmiöitä, jotka tulee huomioida, kun tavoitellaan toimivia ja energiatehokkaita rakennuksia. Tietokoneiden kasvanut laskentateho ja kehittyneet ohjelmat mahdollistavat ilmiöiden yhtäaikaisen tarkastelun. Vaatimuksena on se, että tarkasteltavasta kohteesta on olemassa riittävät lähtötiedot. Simulointiohjelma laskee annetuissa aikaperiodeissa tuloksia, joita voidaan tarkastella rakennuksen eri käyttötilanteissa ja ajankohtina.

Simulointiohjelmilla saadaan erityisen hyödyllistä tietoa tiloista ja rakennuksista, joilta vaaditaan vakaita sisäilmaolosuhteita.  Mallin avulla tehtävä auringon lämpösäteilyn, varjostuksen, lämmityksen, jäähdytyksen ja ilmanvaihdon yhteisvaikutusten tarkastelu auttaa löytämään energiankäytön kannalta optimaalisia ratkaisuja niin talotekniikassa kuin rakenteiden suunnittelussa. Suurin hyöty simuloinnista saadaan, kun sen tuloksia käytetään jo suunnitteluvaiheen alkupuolella, jolloin tehdään suuri osa esimerkiksi rakennuksen energiatehokkuuteen vaikuttavista päätöksistä. Vaikka uudet suomalaiset rakennukset ovat jo varsin energiatehokkaita, parannettavaa riittää aina. Jatkossa vaaditaan yhä pienempien tekijöiden vaikutusten huomioimista nollaenergiatasoon pyrittäessä. Mallinnuksella on mahdollista löytää ja erotella näitä pienempiä tekijöitä.

Rakennuksen tekninen säätöautomaatio on lisääntynyt viime vuosikymmenten aikana. Varsinkin uudempien toimistorakennusten valaistus-, lämmitys-, ilmanvaihto- ja jäähdytysjärjestelmiä ohjataan käyttöprofiilien mukaisesti kiinteistöautomaatiojärjestelmien avulla. Tässä on suuri etu simulointien tuottamista tuloksista. Hyvän simulaatiomallin ja todellisen energiakulutuksen vertailulla on mahdollista löytää kehityskohteet järjestelmässä ja kontrolloida systeemiä.

Mallinnuksen tuloksista voidaan poimia esimerkiksi olohuoneeseen tuleva auringon lämpösäteily (keltainen) maaliskuun 19 päivänä. Teho on suurimmillaan yli 1200 W.

Talotekniikka on lisääntynyt myös asuinrakennuksissa ja varsinkin pientaloissa on hyvin eri tasoisia järjestelmiä. Kehitys näyttäisi kulkevan kohti tilannetta, jossa yhä suurempaa osaa talon ilmanvaihto- ja lämmitysjärjestelmiä ohjataan automaation kautta, jota erilaiset toimintasensorit ohjaavat. Ennakkoon toteutettavalla olosuhdesimuloinnilla voidaan pientalonkin suunnittelussa löytää optimaalisia ratkaisuja esimerkiksi energiatehokkuuden tai sisäilmaston laadun suhteen.  Tilojen ylilämpenemisen arviointiin simulointimallit ovat hyvä väline. Ikkunoiden suuntaus, auringonvalon, lämpösäteilyn varjostavien elementtien ja kasvillisuuden vaikutusten huomioiminen ovat asumismukavuuteen vaikuttavia tekijöitä, jotka korostuvat kuumina kesäpäivinä.

Aurinkoenergian parempi hyödyntäminen

Uusiutuvan energian, esimerkiksi aurinkoenergian, potentiaalista saadaan hyvinkin tarkka arvio niin tuoton kuin kulutuksenkin osalta, kun käytettävissä on riittävät lähtötiedot. Optimoimalla järjestelmä ennakkoon mahdollistetaan haluttu lopputulos ja vältytään yli- tai alimitoitukselta vaikka aurinkopaneelien määrässä.

Pitkäaaltoisen säteilyn ja konvektion vaikutus (W/m2) rakennuksessa. Simuloidut tilanteet maaliskuussa klo 15.30 ja 22.00

Aurinkoenergian passiivisen hyödyntämisen arvioinnissa simuloinnilla saadaan arvokasta tietoa esimerkiksi eri vuorokauden aikana auringonsäteilyn vaikutuksista eri tiloissa. Kuvassa 2 korostuu maaliskuun päivä- ja yöaikainen ero. Päivällä tilat keräävät energiaa auringosta ja viileän yön tunteina ikkunat päästävät lämpöä toiseen suuntaan. Erilaisilla ratkaisujen avulla on mahdollista parantaa rakennuksen energiatehokkuutta esimerkiksi parantamalla lämpöenergian varastoitumista rakenteisiin tai lämmitysjärjestelmään.

 

Teksti ja kuvat Jaakko Aaltonen

Puun käytöstä pientalojen lämmityksessä

Perinteisesti suomalaiseen pientaloon on rakennettu tulisija joko päälämmönlähteeksi tai muun lämmitysjärjestelmän rinnalle. Lämmitysjärjestelmät ovat kehittyneet ja monipuolistuneet. Samaan aikaan asumistottumukset ja tilankäyttö rakennuksissa ovat muuttuneet. Merkittävä puun käyttö lämmityksessä vaatii aikaa ja varastointitilaa.

Useimmiten koti kannattaa lämmittää muulla kuin puulla, esimerkiksi kauko- tai maalämmöllä tai ilmalämpö­pumpulla. Uusien pientalojen lämmitysenergian kulutus asuinneliötä kohti on huomattavasti pienempää kuin vanhojen ja usein tulisija jää varsin vähälle käytölle. Kun rakennusta lämmitetään lämpöpumpulla, ei puun käytöllä päästä taloudellisessakaan mielessä kovin suuriin säästöihin, ellei puuta saada omasta metsästä.

Toisaalta ostoenergian hinnannousu näkyy lisääntyneenä puunpolttona pientalojen lämmityksessä. Talven kovina pakkasjaksoina sähköenergian käyttö on Suomessa huippulukemissa ja esimerkiksi varaavaa takkaa voidaan käyttää lisälämmön­lähteenä. Varaavassa takassa puita poltetaan vain pieni määrä kerrallaan. Iso osa lämpöenergiasta varastoituu tulisijan rakenteisiin ja vapautuu huoneeseen pikkuhiljaa.

Lähes kaikkien uusien omakotitalojen vakiovarusteisiin kuuluu tulisija”

Tulisija on tarpeellinen myös sähkökatkojen aikaan, jolloin muuta lämmitystä ei voida käyttää. Talvimyrskyjen takia monen omakotitalon lämmitys on ollut täysin puulämmityksen varassa pitkiäkin aikoja.

Lähes kaikkien uusien omakotitalojen vakiovarusteisiin kuuluu tulisija.

 

 

 

 

 

 

 

 

 

 

 

 

Vaikka puu on uusiutuva luonnonvara, liittyy sen energiakäyttöön samoja ongelmia kuin fossiilisten polttoaineiden käyttöön. Puuhun varastoitunut hiilidioksidi vapautuu poltossa ilmaan ja sen uudelleensitomiseen kasvaviin puihin vie suhteellisen pitkän ajan. Puun pienpoltossa polttoprosessi on usein puutteellinen ja ilmaan vapautuu tarpeettoman paljon hiukkaspäästöjä. Päästöjen haittoja voidaan vähentää oikealla polttotekniikalla ja oikeanlaisilla tulisijoilla.

Päästöjen synnyn kannalta haitallisinta on, jos tulipesä ahdetaan täyteen ja palamista pitkitetään pienellä ilmamäärällä. Esimerkiksi varaavaan uunin polttopuumäärä on 3–5 kg pesällistä kohti. Ensimmäisessä pesällisessä vähemmän ja pienempiä noin 5 cm halkaisijaltaan olevia pilkkeitä ja toisessa pesällisessä hieman suurempia n. 1 kg suuruisia puita. Pilkkeet tulee latoa pesään siten, että ilma pääsee kulkemaan polttopuiden väleistä ja vapaata tilaa pitää olla 1/3 tulipesän korkeudesta. Puita lisätään vasta kun edelliset ovat palaneet lähes hiillokselle. Hehkuva hiillos luovuttaa lämpöä 25–50 % puun energiasisällöstä ja hiilloksella olevan pesän ilmavirtausta pienennetään. Hormipellit suljetaan kuitenkin vasta kun hiillos on palanut loppuun.

Tulisijat ovat kehittyneet ja esimerkiksi pesän parantuneella ilmavirtauksella aikaansaadaan parempi polttoprosessi. Tehdasvalmisteisten uunien myötä päästöjen arviointi on luotettavammalla pohjalla ja päästöt kontrolloidumpia. Paikalla muurattuihin uuneihin on tehty vuosien kuluessa parannuksia ja uusia innovaatioita, jotka johtavat esimerkiksi täydellisempään savukaasujen palamiseen, on tuotu markkinoille. Jotkin puulämmitteiset kiukaat ovat jo varsin energiatehokkaita ja vähäpäästöisiä, mutta pääsääntöisesti kiuasvalmistajilla on vielä paljon tehtävää tässä suhteessa.

Pienhiukkaset puunpolton ongelma

Pääkaupunkiseudulla vuonna 2014 tehdyn selvityksen mukaan tulisijojen hiukkaspäästöt ovat siellä samaa suuruusluokkaa kuin autoliikenteen pakokaasujen hiukkaspäästöt. Puunpoltosta vapautuvat pienhiukkaset vaikuttavat asuinalueiden ilmanlaatua heikentävästi ja aiheuttavat suurempina pitoisuuksina kohonneen terveysriskin. Noki ja osa tuhkasta kulkeutuu palokaasujen mukana ilmaan. Pienhiukkaset kulkeutuvat hengityselimistöön ja riippuen altistuksen määrästä aiheuttavat varsinkin herkistyneillä ihmisillä oireita ja lisäävät sairastumisriskiä. Puun pienpolton yleistyessä kuntien terveydensuojeluviranomaisille tehdyt polttoa koskevat savuvalitukset ovat lisääntyneet.

Nokipäästöillä on myös ilmastovaikutuksia. Varsinkin pohjoisilla alueilla nokihiukkaset laskeutuessaan lumen pinnalle nopeuttavat sen sulamista. Paljastunut maan pinta imee auringonvaloa ja lämpöenergiaa lämmittäen omalta osaltaan ilmastoa.

Joka tapauksessa puuta tullaan vielä pitkään käyttämään asuntojen lämmittämiseen ja sen määrä pysyy arvioiden mukaan samana tai jopa lisääntyy lähivuosina. Sen takia tulisijojen hyvä tekninen taso ja oikeanlainen polttaminen ovat päästöjen vähentämisen kannalta ensiarvoisen tärkeitä tekijöitä, joilla haitallisia päästöjä voidaan vähentää.  Muutama perusasia, joilla saadaan mm. noen muodostumista vähenemään, on hyvä muistaa:

  • Polta vain kuivaa puuta.
  • Säilytä polttopuut ilmavassa paikassa ja suojassa sateelta.
  • Puunpoltossa käytettävä lämmityslaite pitää nuohota säännöllisesti.
  • Sytytä polttopuut pesään ladottujen pilkkeiden yläosasta.
  • Huolehdi palamisprosessin riittävästä ilmansaannista.
  • Älä polta roskia.

Hyvä opas oikeanlaiseen puunpolttoon löytyy tästä linkistä https://www.vtt.fi/inf/julkaisut/muut/2008/VTT-R-10553-08.pdf

 

Teksti ja kuva: Jaakko Aaltonen

Lähteet:

Tulisijojen käyttö ja päästöt pääkaupunkiseudulla vuonna 2014. HSY:n julkaisuja 2/2016. Helsinki. Viitattu 2.1.2019

https://www.hsy.fi/sites/Esitteet/EsitteetKatalogi/Julkaisusarja/2_2016_Tulisijojen_kaytto_ja_paastot_2014.pdf

Alakangas, A. Erkkilä, H. Oravainen, 2008. Tehokas ja ympäristöä säästävä tulisijalämmitys. Polttopuun tuotanto ja käyttö. VTT. Jyväskylä. Viitattu 2.1.2019

https://www.vtt.fi/inf/julkaisut/muut/2008/VTT-R-10553-08.pdf

 

Rakennusten ilmanvaihdosta energiankulutuksen näkökulmasta

Rakennusten ilmanvaihto on välttämätöntä rakennusten käyttökelpoisuuden ylläpitämiseksi. Se tarkoittaa käytännössä likaisen ilman korvaamista uudella puhtaalla ilmalla.

Koko rakennuksen ilmamäärä tulee vaihtua käyttötarkoituksen mukaan tietyllä tehokkuudella ja ilmamäärillä. Esimerkiksi tavallisen pientalon ilman tulisi vaihtua käytön aikana vähintään kerran kahdessa tunnissa.

Ilma vaihtuu rakennuksessa hallitusti ja hallitsemattomasti. Suunniteltu ilmanvaihto voidaan toteuttaa rakennuksessa koneellisesti tai painovoimaisesti. Se, että poistoilman lämpöenergian otetaan nykyisin talteen edellyttää asianmukaisia ilmankäsittelykoneita. Käytännössä tämä on merkinnyt painovoimaisten rakennusten hyvin vähäistä määrää uudistuotannossa ja käytännössä lähes kaikki uudet rakennukset varustetaan lämmöntalteenotolla varustetulla ilmanvaihtolaitteistolla.

” Ilmanvaihtojärjestelmän hallittu säätäminen ja tasapainottaminen on edellyttää riittävän tiiviitä rakenteita.”

Hallitsematon, erilaisista ilmavuodoista johtuva, ilmanvaihto pyritään saamaan mahdollisimman pieneksi. Täysin tiivistä rakennusta on käytännössä mahdotonta tehdä mutta huolellisella suunnittelulla, toteutuksella ja valvonnalla vuotoilmasta johtuvat haitat voidaan minimoida. Samalla hallitun ilmanvaihdon tulee toimia riittävällä tasolla, jossa rakennuksen tulo- ja poistoilmavirrat ovat tasapainossa.

Ilmanvaihtojärjestelmän hallittu säätäminen ja tasapainottaminen on edellyttää riittävän tiiviitä rakenteita. Toisaalta tiiviys vaatii myös tarkkuutta koneellisen ilmanvaihdon ilmavirtojen säädössä. Epätasapaino johtaa rakennuksessa helposti ei toivottuihin paine-eroihin suhteessa ulkoilmaan.

Höyrysulun läpäisyt vaativat erityistä huomiota. Tavallisia vuotokohtia ovat ikkunat ja ovet sekä ulkoseinien liitokset ylä- ja alapohjiin. Vuotokohdista siirtyy, lämmön lisäksi, sisäilman kosteus rakenteisiin ja mahdolliset epäpuhtaudet huoneilmaan. Uudisrakennusten tiiviys on parantunut huomattavasti verrattuna vanhaan rakennuskantaan. Energiatehokkuuden kannalta vaikutus on merkittävä.

Läpivienti toteutettu erityisellä läpivientitiivisteellä

Ilmanvaihdon energiakulutus koostuu itse koneen puhaltimien, tuloilman lämmittämisen tai jäähdyttämisen, poistoilman mukana poistuvan sekä ilman kuivattamiseen tai kostuttamiseen käytetystä energiasta. Ilmanvaihtokoneiden energiatehokkuus ja tekniikka on vaatimusten myötä parantunut. Esimerkiksi poistoilman lämpöenergiasta saadaan suurin osa talteen ja sitä voidaan käyttää tuloilman tai muun lämmityksen tarpeisiin.

Rakennuksen ilmanvaihtojärjestelmän energiatehokkuutta voidaan parantaa erilaisilla ohjausjärjestelmillä. Niillä voidaan ohjata koneita tarpeenmukaisesti. Käyttöajan ulkopuolella rakennuksessa voidaan pudottaa ilmamääriä tai vastaavasti tehostaa ilmanvaihtoa tiloissa, jos kuormat jostain syystä lisääntyvät. Ilmanvaihdon käytönaikainen seuraaminen, huoltaminen mittaaminen ja säätäminen ovat niiden tavoitteiden mukaisen toiminnan ja energiakulutuksen kannalta tärkeitä tekijöitä. Lukuisten sisäilmaongelmien taustalta löytyy valitettavan usein puutteelliset huoltotoimet ja vajavaisesti toimiva tai suunnitelmista poikkeava järjestelmä.

Pientalon lämmöntalteenotolla varustettu ilmanvaihtokone sisältää tulo- ja poistoilmapuhaltimet. Kanaviston sijoittaminen lämmöneristyksen sisäpuolelle vähentää lämpöhäviötä.

 

Teksti ja kuvat: Jaakko Aaltonen

Lähteet:

J. Vinha, M. Korpi, T. Kalamees, J. Jokisalo, L. Eskola, J. Palonen, J. Kurnitski, H. Aho, Mikko Salminen, Kati Salminen, M. Keto. 2010. Asuinrakennusten ilmanpitävyys, sisäilmasto ja energiatalous. Tampere. Viitattu 21.10.2018

https://docplayer.fi/3169268-Asuinrakennusten-ilmanpitavyys-sisailmasto-ja-energiatalous.html

Energiatehokkuudesta ja hiilijalanjäljestä

 

Pienempi hiilijalanjälki rakentamisessa on suoraan verrannollinen käytetyn rakennusmateriaalin määrään ja laatuun. Pohjolan ilmasto asettaa omat reunaehdot rakennuksille, lämmitykselle ja materiaaleille. Tasapainon löytäminen rakennusten eristämisen, lämmityksen, ilmanvaihdon ja asumisviihtyvyyden välillä määrittelee sen, minkälaisia rakennuksia täällä tehdään. Asuinrakentamisen standardit ovat aikojen kuluessa muotoutuneet tietynlaisiksi. Moni asia on muuttunut ja tulee edelleen muuttumaan. Matkalla on tehty onnistuneita ratkaisuja myös uusien materiaalien ja työtapojen käytössä. Valitettavasti epäonnistumisiakin mahtuu mukaan.

”Pienempi hiilijalanjälki rakentamisessa on suoraan verrannollinen käytetyn rakennusmateriaalin määrään ja laatuun.”

Suunnittelua ja rakentamista ohjataan lakien, asetusten ja valvonnan avulla. Esimerkiksi vuoden 2018 alussa voimaan tulleet uudet asetukset asettavat rakennuksille määräyksiä, joilla pyritään yhä energiatehokkaampiin rakennuksiin. Asetuksissa heijastuu myös tavoite pienentää rakennusten hiilijalanjälkeä. Vaikka asetukset ohjaavat rakentamista, on valinta siitä, minkä tyyppisiä rakennuksia tehdään, aina lopulta asunnon käyttäjän tai omistajan. Asunnon koko, tilasuunnittelu, materiaalit, energiaratkaisut ja sijainti ovat tekijöitä, jotka lopulta ratkaisevat syntyykö vuokrasopimus, osto- tai rakentamispäätös. Suurimmassa osassa asunnonvalintatilanteista hiilijalanjäljen pohdinta jää varmasti tekemättä. Asia on lisäksi varsin hankalasti arvioitavissa. Rakennusten energiatodistus helpottaa jossakin määrin asiaa, mutta ei kerro juuri mitään itse rakennusmateriaalien hiilijalanjäljestä.

Energiamerkinnät asunnoissa

Kuluttajalaitteista tutut energiamerkinnät ovat tulleet myös asuntojen vuokraus- ja myynti-ilmoituksiin. Lisäksi uudisrakennuksen lupahakuprosessissa vaaditaan laskelmat rakennuksen energiatehokkuudesta (E-luku). E-luvun perusteella rakennukset luokitellaan luokkiin A:sta G:hen. Todistuksessa A luokka on energiatehokkuudeltaan paras. Asumisen tällaisessa talossa voidaan olettaa olevan käyttökustannuksiltaan edullista ainakin verrattuna heikomman E-luvun taloihin. Laskennalliset arvot eivät tietenkään kerro koko totuutta, vaan energiakulutuksen tasoon vaikuttaa asukkaiden oma toiminta. Huonelämpötilan nosto yhdellä asteella nostaa lämmityskustannuksia keskimäärin viisi prosenttia. Lämmönsäätöjärjestelmän asetuksiin kannattaa siis perehtyä. Samanlaisia energiasyöppöjä voivat olla esimerkiksi valmiustilassa olevat kuluttajalaitteet, liian pitkään lämmitetty sauna, ylipitkät suihkut, väärin säädetty ilmastointijärjestelmä jne. Sähkölasku onkin usein hyvä mittari myös oman asumisen hiilijalanjäljen arvioimiseen.

”Sähkölasku onkin usein hyvä mittari myös oman asumisen hiilijalanjäljen arvioimiseen.”

Asunnon toimivat, omiin tarpeisiin mitoitetut tilat ovat yksi tärkeimmistä tekijöistä asuntojen valinnassa. Tarpeet ovat hyvin yksilöllisiä ja mieltymykset erilaisia. Luonnollisesti pienemmän asunnon rakentamiseen ja ylläpitoon kuluu vähemmän energiaa. Asumisviihtyvyydestä ei tulisi kuitenkaan tinkiä. Suunnittelun, rakentamisen ja kaavoituksen vastuu korostuu siinä, ettei palata liian ahtaan asumisen aikaan painottamalla pienten asuntojen tuotantoa. Ei edes energiatehokkuuden varjolla. Tälläkin hetkellä monet asuvat liian ahtaasti tai huonokuntoisissa asunnoissa yksinkertaisesti siitä syystä, ettei suurempaan tai parempikuntoiseen asuntoon ole varaa.

Kuva: Puu on usein käytetty runkomateriaali pientaloissa. Se myös sitoo hiilidioksidia koko rakennuksen elinkaaren ajan.

Teksti ja kuvat: Jaakko Aaltonen

 

Lisätietoja energiatehokkuuden määräyksistä: http://www.ym.fi/fi-FI/Maankaytto_ja_rakentaminen/Lainsaadanto_ja_ohjeet/Rakentamismaarayskokoelma/Energiatehokkuus

Lämmitysmuotojen jäljillä

Suomalaisten asumisen hiilijalanjälkeen vaikuttaa eniten asunnon lämmitysmuoto ja lämmitysenergian määrä. Kuitenkin vain harva on tietoinen siitä, kuinka paljon oman kodin lämmittämiseen menee energiaa. Tuoreimmat Tilastokeskuksen energiankulutustiedot ovat vuodelta 2016, ja silloin asumisen energiankulutuksesta 68 % meni asuinrakennusten tilojen lämmittämiseen ja 15 % käyttöveden lämmitykseen. Loput 17 % jää siis kaikelle muulle kuten valaistukselle, ruoan laitolle ja muille sähkölaitteille. Keskimäärin vuoden kokonaisenergiankulutus vaihtelee 15 000 kWh molemmin puolin talouden koosta, asumismuodosta ja rakennuksen iästä riippuen. Lisäksi omilla kulutustottumuksilla on merkittävä vaikutus kokonaiskulutukseen.

Lähes puoli Suomea kaukolämmössä

Lämmityksen hiilijalanjälkeen vaikuttaa lämmityslaitteisto ja sen rakentamisesta muodostuneet päästöt, mutta pitkässä juoksussa suurimmat päästöt muodostuvat energian tuotantoon käytetystä polttoaineesta. Pienimmät päästöt saadaan biopolttoaineilla kuten pelletillä ja hakkeella. Suurimmat päästöt aiheutuvat turpeesta (jyrsinturve 381 g CO2/kWh), kivihiilestä (341 g CO2/kWh) ja polttoöljyistä (kevyt polttoöljy 267 g CO2/kWh). Näitä polttoaineita käytetään pääasiassa kaukolämmön ja sähkön yhteistuotantoon, jolloin kaukolämmön käyttäjien päästöt näyttävät yhtäkkiä melko korkeilta. Kuitenkin monissa kaukolämmöntuotantolaitoksissa iso osa turpeesta korvataan biopolttoaineilla, joilla päästöt ovat laskennallisesti nollassa. Tämä pienentää kaukolämmön hiilijalanjälkeä. Kaukolämmön yhteistuotantolaitosten hiilidioksidipäästöjen keskiarvo vuonna 2017 oli noin 176 g CO2/kWh (Motiva).

Maalämmön markkinaosuus on viimeisen 10 vuoden aikana lisääntynyt vuoden 2008 alle 30 %:n osuudesta jo lähes 60 %:iin. Samaan aikaan sähkölämmityksen osuus on pudonnut 45 %:sta alle 20 %:iin. Sähköntuotannon päästöt ovat viimevuosien uusiutuvan energian buumin johdosta laskeneet yli 200 grammasta jo alle 100 g CO2/kWh. Näillä luvuilla sähkölämmitys on hyvinkin ekologinen vaihtoehto ja maalämmön hiilidioksidipäästöt jäävät vielä tästä alle kolmannekseen, kun huomioidaan laitteen lämpökerroin (COP).

Vertailuun löytyy työkaluja

Energiaratkaisujen vertailuun löytyy Energiavalinta.fi-verkkopalvelu, joka tosin toistaiseksi toimii vain Lahden ja Lappeenrannan seudulla, myös Forssa on tulossa pian mukaan. Palveluun syötetään oma osoite, jolla se etsii rakennuksen tiedot, tekee arvion energian kulutuksesta sekä laskelman vaihtoehtoisista energiantuotantomuodoista. Lisäksi se ilmoittaa säästetyt hiilidioksidipäästöt ja kustannukset. Tietokantaan on syötetty maalämmön ja aurinkoenergian potentiaalista kuntakohtaista tietoa, jota palvelu hyödyntää laskennassaan. Palvelu vertailee seuraavia energiaratkaisuja: aurinkolämpö ja -sähkö, ilma-vesilämpöpumppu, kaukolämpö, maalämpöpumppu, pelletti sekä vihreä sähkö ja antaa näistä keskimääräisiin kulutustietoihin perustuvat takaisinmaksuajat ja vaikutukset hiilidioksidipäästöihin. http://energiavalinta.fi

Teksti ja kuvat: Petri Lähde

Lähteet:

Ympäristöhallinnon verkkopalvelu. http://www.ymparisto.fi/fi-FI/Kulutus_ja_tuotanto/Suomalaiset_eivat_tiedosta_asuntojen_lam%2828008%29

Motivan verkkosivut. https://www.motiva.fi/files/3193/Polttoaineiden_lampoarvot_hyotysuhteet_ja_hiilidioksidin_ominaispaastokertoimet_seka_energianhinnat_19042010.pdf